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E N G I N E E R I N G  C A L C U L A T I O N S  O F  C O N T A M I N A T I O N  
O F  S H A L L O W  R E S E R V O I R S  

L. A. Krukier and L. G. Chikina UDC 519.6 

Results of a numerical investigation of the stability and errors in the solution obtained with the use of 

counterflow difference schemes applied to modeling of transfer of suspended substances and solutes in a 

movable aqueous medium are discussed. Recommendations regarding the proper choice of schemes in 

engineering calculations are presented. 

The development of a mathematical model of the ecosystem of natural reservoirs includes the problem of 

development of the model of the transfer of suspended substances and solutes in a movable aqueous medium. The 

hydrodynamics of deep lakes has been investigated in detail by Filatov [1, 2 ]. A one-dimensional model of the 
diffusion process considered over the reservoir's depth has been presented by Kolodochka [3 ]. Of special interest 

is the study of the ecosystem of shallow reservoirs such as, e.g., the Azov sea [4, 51, the Balkhash lake, and fish 

breeding ponds. Linear dimensions of these reservoirs substantially exceed their depth, and therefore the "shallow 

water" equations [6 ] are applicable to the description of hydrological processes taking place in reservoirs of this 

type. 
The so-called counterflow difference scheme, which is easy-to-implement, is portable, and is highly stable 

in calculations [7 l, is the most widespread among engineers solving problems of this type. 

At the same time, the problem of the conservative character of the scheme [8 ] and its sensitivity to the 

value of the substance decay coefficient in applications of the scheme to closed reservoirs is of extreme importance. 

This is connected with the use of the boundary condition of the second kind in the calculation of contamination in 

closed reservoirs, which leads, at the zero decay coefficient, to the spatial degeneracy of the difference operator 

[9 ] and emergence of a system of equations not having a unique solution. Bochev [10 ] has shown how to avoid this 

difficulty. 

The objective of the present work was to present recommendations for engineers on the use of different 
variants of the approximation of convective terms proposed in [5 ] for evaluation of their impact on the conservative 

character of the scheme, and to investigate the effect of the degree of inexplicitness on the stability (i.e., either 

only diagonal elements or the entire Laplace operator are considered for the (n+ 1)th layer). 

We considered the reservoir described by the region f2 (the water region of the reservoir) and the depth 

array H(x, y), x, y E Q, where flows are excited only by the wind and the horizontal dimensions of the reservoir 

are assumed to exceed substantially the vertical ones (the "shallow water" model). 

The concentration equation 

U - - + v - - =  K OY + Oy2) --IxS + f (x ,y , t )  (1) 

has been considered in the region Q with boundary conditions on the boundary dQ 

Rostov State University, Rostov, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 71, No. 2, 

pp. 349-352, March-April, 1998. Original article submitted January 12, 1996. 

354 1062-0125/98/7102-0354520.00 © 1998 Plenum Publishing Corporation 



TABLE 1. Relative Errors (%) for Schemes I-IV 
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TABLE 2. Number of Iterations n and Residual Weight 6 of Substances for Schemes I-IV 
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TABLE 3. Computation Time T and Number of Steps n Required for Convergence of the Solution for Schemes I-IV 
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as _ 1 (-fi, q ) . s  (2) 
On K 

where s is the concentration of the substance, q = {u, v} is the velocity vector, K is the diffusion coefficient, it is 

the substance decay coefficient, n is the external normal to the surface, and f ( x ,  y, t) is the function describing the 

source within the region. 

Let us construct a rectangular grid G with steps hi and h2 along the Ox and Oy axes, respectively, within 

the region f2. We consider the following approximation of Eq. (1) on the grid G in the node (i, y): 

{ n+a - n + l  n+a n+a ~ n + l  n + a ' ~  
1 n 2 n ISi+ 1 ,j -- 2Si,] + S t -  1 ,] St,j+ 1 -- ZSi,] + St,j-- 11 n+ 1 n 

Lpsi, j + L-psi, j = K 2 + 2 - t u s i , j  + f i , j '  P = 1,  2 ,  (3) 
hi h2 

--1,2 n where Lp sid is the approximation of convection terms by counterflow differences [7 ] along x and y, respectively, 

having the following form: 

1 rl 
LI  si,] si,] = 

Si,] -- S t -  1,] 
ui, ] hi , ui, ]>_0  , 

st+ 1 ,j -- Si,] 
ui, j hi , ui, j <  0 ; 

(4) 

Z~si,  ] = U R S R  -- ULS  L 
hl ' U R = Ui+l, j , UL = ui,]; 

SR = { s i , j ,  UL >~ 0 , { S i - l , ] '  UR > 0 , 
S i + l , ] ,  U L < 0 , SL  = Si,]'  [JR < 0 (5) 

A similar approximation is used for LoS; n denotes the iteration number. 

The boundary  condition (2) was approximated in the following manner:  

S I 0 a = S B  1 + ~ ( u ' c o s ( - f i , ~ )  + v ' s i n ( - f i , ~ ) )  , (6) 

where S I 0~ is the concentration on the boundary,  SB is the concentration in an internal point of the grid G situated 

at the smallest distance from the boundary ,  and x is the positively directed unit vector of the Ox  axis. 

In what follows, we consider four variants of the scheme (3): (I) p = 1, a = 0, (II) p = 2, a = 0, (III) p = 

l , a = l ,  and (IV) p = 2 ,  a =  I. 

In schemes I and II, only diagonal elements are considered on the (n+ 1)th layer,  whereas in schemes III 

and IV the entire Laplace operator  is taken into consideration. The  term characterizing decay of the substance is 

taken from the ( n + l ) t h  layer. In this case, a s tandard subroutine from the LINPACK mathematical  package is 

used for the inversion of the symmetrical  positive-definite matrix. The problem under  considerat ion was solved by 

the sett lement method. 

The  problem of propagation of a substance within a closed square [0, 1 ] × [0, 1 ] with constant  depth  and 

known stat ionary circulatory flow with changing velocity signs was used as a model problem. Th e  step along the 

spatial coordinates was hi = h2 = 0.125; the reservoir 's  depth was h = 0.5. Since the region of calculations is closed, 

the boundary condition (2) takes the form 

Os 
- 0 ,  ( 7 )  On 

i.e., it becomes a Neumann- type  condition and assumes the absence of t ransfer  of the substance through the 

boundary. 
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At the first stage of the investigation, we compared the accuracy of 

The  latter was given by the function 

numerical and analytical  solutions. 

2 2 3 3 
x + y  x + y  (8) 

s (x ,  y)  = 2 3 ' 

satisfying the boundary  condition (7). Then (8) was substituted into (1) and values of f (x ,  y) were calculated in 

each point of the grid, which was followed by the solution of Eq. (3), and the relative error  was evaluated for 

different starting data of the iteration method (s = const) and different values of bt. Results of this test are presented 

in Table 1. 
At the same time, it should be noted that all schemes yielded the exact solution when being tested with 

problem (1) with boundary  conditions of the first kind. 

The  second test checked the conservative character  of schemes and their stability with respect to the value 

of the diffusion coefficient, and was used for evaluation of the number  of iterations necessary to achieve the given 

accuracy e. The  solution was considered as converged if the condition 

n + l  n 
II s II ¢ = m a x  I s i , j  - si,yl < e r .  

i , j  

was satisfied on the space C of continuous functions. The  conservative character  was checked against the residual 

substance weight d over the entire region f2. At the initial instant, 100 weight units of the substance were introduced 

into the region. 

A 6-function localized in the center of the region was taken as the initial condition. Results of the test are 

presented in Table  2. 
Table 3 presents the computation time T (sec) and the number  of steps n required to obtain the converged 

solution obtained on an IBM AT 486DX2-66 personal computer for different  values of k at T --- I000,/~ = 0, and e 
= 10 - 7 .  

The computations make it possible to draw the following conclusions: 

1. When approximating correction terms, one should use formulas (5) preserving the conservative character  

of the problem (schemes II and IV). 
2. In the case of calculat ion of contaminat ion  with conservat ive  or a lmost  conservat ive  subs tances  

< 0.01), one should employ the special method of computation proposed in [ i 0 ]  and scheme IV. 

3. When diffusion coefficients are of the order  of O(1) or smaller, it is more advisable to use scheme IV, 

which makes it possible to perform stable computations with a larger time step. 

4. Desp i t e  the  fact  tha t  s cheme  IV requ i res  a longer  compu ta t ion  t ime a n d  is more  involved in 

implementation, results of its applications make us recommend this scheme for use in applications. 

5. The  following method of choosing the finite-difference scheme for engineering computations of the 

contamination spread in shallow reservoirs can be recommended: if boundary  conditions of the first kind are set 

up on the boundary  of the region or a portion of it, the use of the scheme II is advisable; if the condition of the 

second kind is set up on the entire boundary  of the region, scheme IV should be used. 

It should be noted that completely explicit schemes where all values of siy in (3) are taken from the nth 

layer are almost unconditionally unstable, since computations can be carried out only if z / h  < 2 .10  -4.  
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